The Crystal and Molecular Structure of N,N'-Ethylenebis-(acetylacetoneiminato)methylcobalt(III)

## S. Brückner, M. Calligaris, G. Nardin, and L. Randaccio

Received April 18, 1969

The crystal structure of N,N'-ethylene-bis-(acetylacetoneiminato)methyl-cobalt(III), CoO<sub>2</sub>N<sub>2</sub>C<sub>13</sub>H<sub>23</sub>, has been determined by the heavy atom method and refined to a conventional R-value of 0.090 by the least-squares method using three-dimensional data. The crystals are orthorhombic, space group  $P2_12_12_1$ , with four molecules in the unit cell of dimensions  $a=5.99\pm0.01$  Å,  $b = 13.02 \pm 0.02$  Å,  $c = 17.69 \pm 0.03$  Å. The measured and calculated densities were 1.44 and 1.43 g.  $cm^{-3}$ , respectively.

The crystal consists of monomeric molecules with a five-coordinate stereochemistry. The nearly planar tetradentate ligand occupies the four basal positions of a distorted rectangular-based pyramid, whose axial position is occupied by the methyl group.

The bond lengths are  $1.87 \pm 0.01$  Å (mean) for Co-O,  $1.87 \pm 0.01$  Å (mean) for Co-N,  $1.95 \pm 0.02$ Å for  $Co-CH_3$ .

### Introduction

One of the more remarkable features of organometallic derivatives of cobalt(III) complexes of bis-(acetylacetone)-ethylendiimine (BAEH<sub>2</sub>) is the stability of the cobalt-carbon (alkyl or aryl) bond. In order to elucidate the nature of this bond we have recently reported the crystal structure of the vinylaquo(BAE)-Co<sup>III</sup>[VACo(BAE)]<sup>1</sup>.

As part of this study we have now undertaken the crystal structure analysis of the low-spin pentacoordinate N,N' - ethylene - bis - (acetylacetoneiminato) methyl-cobalt(III)[MeCoBAE].

# **Experimental Section**

The needle-like dark-green crystals elongated along the *b*-axis, were kindly supplied by Professor G. Costa and Dr. G. Mestroni of this Institute.<sup>2</sup>

The cell dimensions, determined from precession photographs, taken with MoKa radiation, are: a = $5.99 \pm 0.01$  Å,  $b = 13.02 \pm 0.02$  Å,  $c = 17.69 \pm 0.03$ A. The calculated density, assuming four formula units, CoO<sub>2</sub>N<sub>2</sub>C<sub>13</sub>H<sub>23</sub>, per unit cell is 1.43 g.cm<sup>-3</sup> in agreement with the value of 1.44 g.cm<sup>-3</sup> of the density measured by the flotation method. The systematic absences, h00 with h odd, 0k0 with k odd and 001with l odd, indicated the space group  $P2_12_12_1$ .

Intensity data were collected by the equi-inclination Weissenberg method using  $CoK\alpha$  radiation. Levels Okl through 5kl and hOl through h9l were recorded by the multiple film technique. The intensities of 819 independent reflections were measured by visual comparison with a standard scale and were placed in a common scale by cross-correlation terms.

The usual Lorentz and polarization corrections and the spot shape correction for non-zero levels were applied. No correction for absorption was made ( $\mu =$  $27 \text{ cm}^{-1}$ ,  $\mu R = 0.1 \cdot 0.4$ ).

All calculations were carried out on an IBM 7044 computer with programs written by A. Domenicano et al.<sup>3,4</sup>

The atomic scattering factors used were those of Hanson<sup>5</sup> et al. for oxygen, carbon and hydrogen, that of Berghuis<sup>6</sup> et al. for nitrogen and that listed in the International Tables of X-Ray Crystallography<sup>7</sup> for cobalt.

### Structure determination

The coordinates of Co atom were easily determined from the Harker sections inspection on the threedimensional Patterson synthesis. A set of structure factors calculated using only the cobalt atom gave an *R*-value of 0.41. From the cobalt-phased three-dimensional Fourier synthesis the remaining nonhydrogen atoms were located.

A structure factors calculation including all nonhydrogen atoms and using an overall temperature factor, B of 3 Å,<sup>2</sup> gave an R value of 0.20. The atomic parameters were then refined by isotropic block-diagonal least-squares method. The R-value fell to 0.110 after five cycles.

S. Brückner, M. Calligaris, G. Nardin, and L. Randaccio, Inorg. Chim. Acta, 2, 416 (1968).
 G. Costa and G. Mestroni, J. Organometal. Chem., 11, 325 (1968).

<sup>(3)</sup> A. Domenicano and A. Vaciago, private communication.
(4) V. Albano, A. Domenicano, and A. Vaciago, Gazz. Chim. It., 96, 922 (1966).
(5) H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 17, 1040 (1964).
(6) J. Berghuis, I. J. M. Haanappell, M. Potters, B. O. Loopstra, C. H. MacGillavry, and A. L. Veenendaal, Acta Cryst., 8, 478 (1955).
(7) « International Tables for X-Ray Crystallography \*, vol. III, Kynoch Press, Birmingham (1962).

Table I. Positional parameters of non-hydrogen atoms and their estimated standard deviations in parentheses ( $\times 10^4$ ).

|       | x           | У           | Z          |
|-------|-------------|-------------|------------|
| Co    | 0.0713(4)   | -0.1082(2)  | 0.1232(1)  |
| O(1)  | -0.1195(19) | 0.0025(8)   | 0.1030(6)  |
| O(2)  | -0.1237(17) | -0.1346(7)  | 0.2038(6)  |
| N(1)  | 0.2421(21)  | -0.0895(9)  | 0.0352(7)  |
| N(2)  | 0.2308(21)  | -0.2301(9)  | 0.1375(7)  |
| C(1)  | -0.2740(45) | 0.1502(15)  | 0.0503(10) |
| C(2)  | -0.0993(28) | 0.0680(12)  | 0.0468(9)  |
| C(3)  | 0.0461(27)  | 0.0620(13)  | -0.0097(9) |
| C(4)  | 0.2136(31)  | -0.0114(13) | -0.0136(9) |
| C(5)  | 0.3839(38)  | -0.0082(15) | -0.0843(9) |
| C(6)  | 0.4314(32)  | -0.1585(15) | 0.0274(11) |
| C(7)  | 0.4263(35)  | -0.2438(14) | 0.0859(10) |
| C(8)  | 0.3544(32)  | -0.3902(15) | 0.1988(11) |
| C(9)  | 0.2059(32)  | -0.2965(13) | 0.1933(10) |
| C(10) | 0.0296(25)  | -0.2869(14) | 0.2475(10) |
| C(11) | -0.1085(26) | -0.2072(13) | 0.2513(8)  |
| C(12) | -0.2966(35) | -0.2025(13) | 0.3124(9)  |
| C(13) | 0.2772(31)  | -0.0273(13) | 0.1848(10) |

Anisotropic block-diagonal least-squares refinement

gave an R-value of 0.095 after three cycles. On a successive three-dimensional difference Fourier synthesis, estimated positions of the hydrogen atoms all occurred in regions of positive electron density. Three more cycles of refinement lowered the R-value to 0.090. The contribution of the hydrogen atoms was held constant with an overall temperature factor of 6 Å.<sup>2</sup>

The weighting scheme used was:

$$w = 1/(5.0+1.0 | Fo | +0.006 | Fo |^2).$$

where the constant values were chosen so that the  $w(|F_{o}| - |F_{c}|)^{2}$  value was essentially constant over all ranges of  $F_{o}$ .

No region of electron density exceeded  $\pm 0.4$  e. Å<sup>-3</sup> on the final  $|F_o - F_c|$  synthesis.

Atomic parameters and their standard deviations are listed in Table I, II, and III. The final observed

**Table II.** Anisotropic temperature factors in the form:  $exp-(B_{11}h^2+B_{22}k^2+B_{33}l^2+B_{12}hk+B_{13}hl+B_{23}kl)$ . These factors and their estimated standard deviations (given in parentheses) are multiplied by 104

|       | Bn      | B22    | B <sub>33</sub> | B <sub>12</sub> | B <sub>13</sub> | B <sub>23</sub> |
|-------|---------|--------|-----------------|-----------------|-----------------|-----------------|
| Co    | 293(5)  | 63(1)  | 32(1)           | 7(7)            | 0(5)            | 5(2)            |
| O(1)  | 348(35) | 67(8)  | 35(4)           | -73(32)         | 38(20)          | -37(9)          |
| O(2)  | 346(33) | 52(7)  | 32(3)           | 18(28)          | 38(21)          |                 |
| N(1)  | 291(35) | 56(9)  | 26(4)           | 72(37)          | 57(23)          | 4(10)           |
| N(2)  | 304(38) | 34(8)  | 30(4)           | -36(33)         | -38(27)         | 16(10)          |
| C(1)  | 754(96) | 71(13) | 37(6)           |                 | 42(52)          | -22(15          |
| C(2)  | 303(46) | 60(11) | 36(5)           | -20(48)         | 50(33)          | 3(13)           |
| C(3)  | 272(47) | 76(13) | 33(5)           | 7(48)           | 22(32)          | -15(14          |
| C(4)  | 384(55) | 81(14) | 25(5)           | 77(52)          | 36(32)          | 4(14)           |
| C(5)  | 560(74) | 94(16) | 34(5)           | 2(73)           | 103(41)         | 7(17)           |
| C(6)  | 336(52) | 89(14) | 49(7)           | -61(59)         | 37(47)          | -18(17          |
| C(7)  | 390(56) | 61(13) | 43(6)           | -31(62)         | -16(44)         | 33(15)          |
| C(8)  | 445(63) | 74(14) | 50(7)           | -6(62)          | -53(40)         | -10(20          |
| C(9)  | 538(59) | 54(12) | 52(6)           | -79(53)         | 246(33)         | 11(17)          |
| C(10) | 197(40) | 86(14) | 45(6)           | 61(44)          | 29(31)          | 22(17)          |
| C(11) | 302(46) | 72(12) | 28(5)           | 44(48)          | -37(33)         | -10(13)         |
| C(12) | 579(68) | 51(12) | 35(5)           | -6(56)          | 140(36)         | -31(14)         |
| C(13) | 396(57) | 60(13) | 38(6)           | -31(53)         | -79(37)         | -11(15          |

Table III. Fractional coordinates of hydrogen atoms multiplied by 103

|         | x    | У    | Z     |
|---------|------|------|-------|
| H(1C1)  | -270 | 200  | 98    |
| H(2C1)  | 431  | 112  | 52    |
| H(3C1)  | -265 | 195  | 2     |
| H(C3)   | 32   | 115  | 54    |
| H(1C5)  | 380  | 80   | -110  |
| H(2C5)  | 547  | 10   | · —65 |
| H(3C5)  | 334  | 50   | -123  |
| H(1C6)  | 581  | -112 | 34    |
| H(2C6)  | 434  |      |       |
| H(1C7)  | 578  |      | 119   |
| H(2C7)  | 420  | -316 | 59    |
| H(1C8)  | 373  | 427  | 145   |
| H(2C8)  | 278  | -444 | 236   |
| H(3C8)  | 512  | -371 | 219   |
| H(C10)  | 7    |      | 285   |
| H(1C12) | -309 | 275  | -336  |
| H(2C12) | 451  | -182 | 287   |
| H(3C12) | -258 | -147 | 354   |
| H(1C13) | 240  | 50   | 180   |
| H(2C13) | 439  | -41  | 167   |
| H(3C13) | 257  | -49  | 242   |

and calculated structure factors are listed in Table IV. The e.s.d.'s in coordinates are derived from the residuals and the diagonal elements of the inverse matrix of the final least-squares cycle.

### Discussion

Bond lengths are shown in Figure 1 together with the numbering scheme for the atoms. The bond lengths and angles are given in Table V together with their estimated standard deviations.

The crystal consists of monomeric molecules with a five-co-ordinate stereochemistry resulting from bonding to Co atom of a nearly planar tetradentate BAE ligand and a methyl group in the axial position. The projection of the structure onto (100) is shown in Figure 2. The geometry about the cobalt atom is closely represented by a rectangular-based pyramid, with the Co atom on the pyramidal axis, 0.12 Å above the basal plane of N(1), N(2), O(1), O(2) atoms.

| 0 0 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ж,              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FC ))           |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FC]             |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н к             |
| 54:54124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>4124<br>41                                                                                     | FC [FC]         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н ж             |
| 497         200           107         107           107         107           108         100           109         100           100         100           100         100           100         100           100         100           100         100           100         100           1014         100           1014         100           1014         100           1014         100           1014         100           1014         100           1014         100           1014         100           1014         100           1014         100           1014         100           1014         100           1015         101           1015         101           1015         101           1015         101           1015         101           1015         101           1015         101           1015         101           1015         101           1015         101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to itci         |
| 0 1 1 1 1 12227777733333344444444555555556677778888887000011111100000011211110000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H K             |
| 13 13 15 13 14 15 15 13 14 15 15 17 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F0 (FC          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N N             |
| 4455555556666647777788488899991211221 445555555555555555555555566667777788888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K F             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 ) <b>≠</b> c) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| ••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * *             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F0 #0           |
| 4 4 5 5 5 5 5 6 6 6 6 7 7 7 8 8 9 0 00 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 5 5 5 1 4 2 4 4 5 5 5 5 5 4 6 6 4 6 7 7 7 7 7 8 8 8 9 0 10 10 0 0 1 1 1 1 1 1 1 2 2 2 2 2 5 5 5 1 2 5 6 5 6 5 6 5 6 7 7 7 7 7 8 8 8 9 0 10 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h K             |
| ** ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fQ              |
| 732 4<br>219X 4<br>32055 4<br>320555 4<br>32055 4<br>32055 4<br>32055 4<br>32055 4<br>32055 4<br>32055 4<br>32055 4 | HF CI           |
| 2223333333444444555486647777888886680001111112227333777786648555466677788886681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H K             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | £0              |
| $\begin{array}{c} 1 \\ 9 \\ 8 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I# Ci           |
| 1;2;5;1;7;7;4;7;4;5;4;5;4;5;4;5;4;5;4;5;4;5;4;5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FO              |
| 312 000 11200 1200 1200 1200 11111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IFC             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N R             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>F</b> 0      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ₩cl             |

Table IV. Observed and calculated structure factors (×10)

Table V. Bond lengths (Å) and bond angles (°), with their estimated standard deviations in parentheses

| 1.874(11) Å | N(1)CoN(2)                                                                                                                                                                                                                                                                                                                                                                                                                    | 86.7(5)°                                              |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 1.871(11)   | N(1) - Co - C(13)                                                                                                                                                                                                                                                                                                                                                                                                             | 92.6(6)                                               |
| 1.876(13)   | N(2) - Co - C(13)                                                                                                                                                                                                                                                                                                                                                                                                             | 93.4(6)                                               |
| 1.870(12)   | Co-O(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                  | 125.9(10)                                             |
| 1.952(18)   | O(1) - C(2) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                            | 111.6(14)                                             |
| 1.313(19)   | O(1) - C(2) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                            | 126.1(15)                                             |
| 1.266(19)   | C(1)-C(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                | 122.1(15)                                             |
| 1.342(20)   | C(2)-C(3)-C(4)                                                                                                                                                                                                                                                                                                                                                                                                                | 123.6(15)                                             |
| 1.453(23)   | C(3) - C(4) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                            | 118.6(14)                                             |
| 1.494(23)   | C(3) - C(4) - N(1)                                                                                                                                                                                                                                                                                                                                                                                                            | 125.6(15)                                             |
| 1.318(21)   | C(5)-C(4)-N(1)                                                                                                                                                                                                                                                                                                                                                                                                                | 115.7(14)                                             |
| 1.498(28)   | C(4) - N(1) - C(6)                                                                                                                                                                                                                                                                                                                                                                                                            | 120.5(14)                                             |
| 1.325(23)   | C(4) - N(1) - Co                                                                                                                                                                                                                                                                                                                                                                                                              | 124.0(11)                                             |
| 1.387(24)   | Co-N(1)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                  | 115.0(10)                                             |
| 1.611(25)   | N(1)-C(6)-C(7)                                                                                                                                                                                                                                                                                                                                                                                                                | 111.9(15)                                             |
| 1.516(26)   | C(6)-C(7)-N(2)                                                                                                                                                                                                                                                                                                                                                                                                                | 110.0(15)                                             |
| 1.513(26)   | C(7)-N(2)-Co                                                                                                                                                                                                                                                                                                                                                                                                                  | 114.8(10)                                             |
| 1.430(25)   | C(7) - N(2) - C(9)                                                                                                                                                                                                                                                                                                                                                                                                            | 117.7(14)                                             |
| 1.329(24)   | Co-N(2)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                  | 126.8(11)                                             |
| 1.560(24)   | C(8) - C(9) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                           | 117.5(15)                                             |
| 84.5(4)°    | N(2)-C(9)-C(10)                                                                                                                                                                                                                                                                                                                                                                                                               | 121.7(16)                                             |
| 94.3(5)     | N(2)C(9)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.7(16)                                             |
| 172.1(5)    | C(9)-C(10)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                              | 124.2(16)                                             |
| 94.4(6)     | C(10)-C(11)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                             | 121.0(15)                                             |
| 173.3(5)    | C(10)-C(11)-O(2)                                                                                                                                                                                                                                                                                                                                                                                                              | 126.5(15)                                             |
| 93.5(5)     | O(2) - C(11) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                          | 112.0(13)                                             |
| 94.1(6)     | C(11)O(2)Co                                                                                                                                                                                                                                                                                                                                                                                                                   | 126.5(10)                                             |
|             | $\begin{array}{c} 1.874(11) \ \mbox{\AA} \\ 1.876(13) \\ 1.876(13) \\ 1.876(13) \\ 1.870(12) \\ 1.952(18) \\ 1.313(19) \\ 1.266(19) \\ 1.342(20) \\ 1.453(23) \\ 1.494(23) \\ 1.318(21) \\ 1.498(28) \\ 1.325(23) \\ 1.325(23) \\ 1.387(24) \\ 1.611(25) \\ 1.516(26) \\ 1.513(26) \\ 1.430(25) \\ 1.329(24) \\ 1.560(24) \\ 84.5(4)^{\circ} \\ 94.3(5) \\ 172.1(5) \\ 94.4(6) \\ 177.3(5) \\ 93.5(5) \\ 94.1(6) \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

The C(13) atom is 2.07 Å above this plane and lies, within the experimental errors, at the apex of the rect-

angular-based pyramid. The planes through the two chemically equivalent halves make an angle of 4.0°.

Inorganica Chimica Acta | 3:2 | June, 1969

The C(6) and C(7) atoms lie above the plane passing through all the other atoms of the tetradentate ligand (0.20 and 0.15 Å respectively). The ethylendiamine bridge, as in the tetracoordinate parent compound Co(BAE), is in eclipsed conformation, the torsional angle around the C(6)-C(7) bond being 2.3°. The least-squares planes of interest are given in Table VI, together with the distances of the individual atoms from these planes. These planes were calculated according to Schomaker et al.<sup>8</sup> with unitary weights for all the atoms. The equations are referred to the crystal axes and x, y, z are fractional coordinates.



Figure 1. Bond lengths and numbering scheme for the atoms of the molecule.



Figure 2. Projection of the structure onto (100).

The displacement of the Co atom above the basal plane is smaller than that found in other square pyramidal structures involving the cobalt atom  $[0.39 \text{ Å in } (\text{paphyl})\text{Co}Cl_2^{9} \text{ and } 0.54 \text{ Å in Co}(\text{NO})$ - $(S_2CN(CH_3)_2)_2^{10}$ ]. This can be explained in terms of the partecipation of the cobalt electrons in the  $\pi$ -orbitals of the conjugate system of the chelate rings. In fact, Furlani<sup>11</sup> recently reported that a square complex represents perhaps the best condition for efficient  $\pi$ -back-bonding as well as a « regular »

- (8) V. Schomaker, J. Waser, R. E. Marsh, and G. Bergman, Acta Crst., 12, 600 (1959).
  (9) M. Gerloch, J. Chem. Soc. (A), 1317 (1966).
  (10) P. R. H. Alderman, P. G. Owston, and J. M. Rowe, J. Chem. Soc., 668 (1962).
  (11) C. Furlani, Coordin. Chem. Rev., 3, 141 (1968).

Table VI. Equations of least-squares planes and distances of atoms (in Å) from the planes

| l) Plane through O(1), O  | (2), N(1) and N | (2)              |
|---------------------------|-----------------|------------------|
| 3.719 x — 7.077 y + 9.958 | 8 z = 0.608     |                  |
| D(1) 0.009 Å<br>D(2)0.009 | N(1)<br>N(2)    | 0.009 Å<br>0.009 |

2) Plane through O(1), O(2), N(1), N(2), C(1), C(2), C(3), C(4), C(5), C(8), C(9), C(10), C(11) and C(12)

| 3.740 x - | - 7.088 y | + | 9.876 z | = | 0.565 |
|-----------|-----------|---|---------|---|-------|
|-----------|-----------|---|---------|---|-------|

-0.004

0.019

C(8)

| O(1)<br>O(2)<br>N(1)<br>N(2)<br>C(1)<br>C(2) | 0.023 Å<br>0.031<br>0.052<br>0.025<br>0.029<br>0.007 | C(4)<br>C(5)<br>C(8)<br>C(9)<br>C(10)<br>C(11) | 0.018 Å<br>0.021<br>0.043<br>0.012<br>0.044<br>0.042 |
|----------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------------|
| C(2)<br>C(3)                                 | -0.049                                               | C(12)                                          | 0.025                                                |
|                                              |                                                      |                                                |                                                      |

3) Plane through O(1), N(1), C(1), C(2), C(3), C(4) and C(5)

| 3.716 x —                    | 7.419 y                            | + 9.50 | )1 z = | 0.566                |       |                           |       |
|------------------------------|------------------------------------|--------|--------|----------------------|-------|---------------------------|-------|
| O(1)<br>N(1)<br>C(1)<br>C(2) | 0.013 Å<br>0.004<br>0.008<br>0.014 |        |        | C(3)<br>C(4)<br>C(5) |       | 0.027 Å<br>0.014<br>0.001 |       |
| 4) Plane<br>and C            | through<br>(12)                    | O(2),  | N(2),  | C(8),                | C(9), | C(10),                    | C(11) |
| 3.750 x .—                   | 6.783 y                            | + 10.2 | 28 z = | 0.720                |       |                           |       |
| O(2)                         |                                    |        |        | C(10)                |       | 0.023 Å                   |       |

C(12)

---0.010

square pyramid, while a distorted pyramid (central atom out of plane) is in a worse situation. The geometry of MeCoBAE seems to be due to a compromise between the necessity of planarity for optimum  $\pi$ -bonding and the best  $\sigma$ -overlap in the Co-C bond. In fact, the Co--CH<sub>3</sub> bond of 1.95 Å seems relatively strong as compared with the other values found for the Co-C  $\sigma$ -bond. The eclipsed conformation of the ethylendiamine bridge is in agreement with this hypothesis. This conformation is very similar to that found for the tetracoordinate Co-(BAE),<sup>12</sup> which adopts an exact planar geometry in spite of the more stable gauche conformation of the ethylendiamine bridge. It seems likely that in the octahedral VACo(BAE)<sup>1</sup> the  $\pi$ -effect imposes less strict conditions (the ethylendiamine bridge is twisted) because of the steric effects of the  $\sigma$ -bonded vinyl group on the tetradentate ligand.

After correction for the different covalent radii of the sp<sup>2</sup> and sp<sup>3</sup> carbon atom, the value of the Co--CH<sub>3</sub> bond length is greater than that of the  $Co-C(sp^2)$ bond found in the VACo(BAE). This lengthening, if significant (~0.04 Å), can be discussed via electrostatic model or via  $d_{\pi} \rightarrow p_{\pi}$  back-donation (metal to ligand).

(12) S. Brückner, M. Calligaris, G. Nardin, and L. Randaccio, Inorg. Chim. Acta, 2, 386 (1968).

311

| $\begin{array}{c} C(8)-C(12)\\ C(9)-C(12)\\ O(1)-C(6)\\ O(1)-C(13)\\ O(2)-C(7)\\ O(2)-C(7)\\ O(2)-C(13)\\ C(1)-C(4)\\ C(1)-C(5)\\ C(2)-C(5)\\ C(3)-C(12)\\ C(3)-C(12)\\ C(13)-C(8)\\ C(1)-C(3)\\ O(1)-C(10) \end{array}$ | I<br>I<br>II<br>II<br>II<br>II<br>II<br>IV<br>V<br>VI |                    | 3.79(3)<br>3.85(3)<br>3.66(2)<br>3.91(2)<br>3.69(2)<br>3.87(2)<br>3.89(3)<br>3.75(3)<br>3.93(2)<br>3.50(3)<br>3.96(3)<br>3.84(2) | $\begin{array}{c} O(2)C(8)\\ C(1)C(10)\\ C(5)C(8)\\ C(5)C(9)\\ C(6)N(1)\\ C(6)N(2)\\ C(6)C(6)\\ C(6)C(7)\\ C(7)N(1)\\ C(7)C(4)\\ C(7)C(6)\\ C(8)C(5)\\ \end{array}$ | VI<br>VI<br>VII<br>VII<br>VII<br>VII<br>VII<br>VII<br>VII<br>VII<br>V |                    | 3.87(2)<br>3.94(3)<br>3.71(3)<br>3.73(3)<br>3.93(2)<br>3.95(3)<br>3.79(3)<br>3.58(2)<br>3.84(3)<br>3.99(3) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------|
| no label<br>I                                                                                                                                                                                                            | x,<br>1+x,                                            | У,<br>У.           | z<br>z                                                                                                                           | v                                                                                                                                                                   | $-\frac{1}{2}+\mathbf{x},$                                            | $-\frac{1}{2}-y,$  | — z                                                                                                        |
| II<br>III                                                                                                                                                                                                                | $-1+x,$ $-\frac{1}{2}-x,$                             | У,<br>У,<br>—У,    | z<br>$-\frac{1}{2}+z$                                                                                                            | VI                                                                                                                                                                  | X,                                                                    | $-\frac{1}{2}+y,$  | $\frac{1}{2}$ – z                                                                                          |
| IV                                                                                                                                                                                                                       | 2<br>1—x,                                             | $-\frac{1}{2}+y$ , | $\frac{1}{2}$ – z                                                                                                                | VII                                                                                                                                                                 | $\frac{1}{2}$ + x,                                                    | $\frac{1}{2}$ - y, | — z                                                                                                        |

However, we believe that many factors, which are usually neglected, as the different co-ordination about the metal atom and the different nature of of the other coordinated ligands, affect the metalcarbon distances. Therefore it is not surprising that, for example, the Co–CH<sub>3</sub> distance of 1.95 Å is very different from the Co–CH<sub>2</sub>COOCH<sub>3</sub> distance of 2.05 Å in the octahedral O-methyl-(Co–C)carboxymethyl-(bis-dimethylglyoximato)pyridinate-cobalt(III).<sup>13</sup>

If one considers that the lengthening of the Co-O distances in VACo(BAE) can be ascribed to the inter-

(13) P. G. Lenhert, Chem. Comm., 980 (1967).

Table VII. Non-bonded distances below 4 Å

molecular hydrogen bonds in which these oxygen atoms are involved, no significant difference can be noted in the bond lengths and angles of the tetradentate ligand and in those involving the cobalt atom, for this and related complexes.

Non-bonded intermolecular distances below 4 Å are given in Table VII.

Acknowledgments. We are grateful to Prof. A. Ripamonti for helpful discussions. This research was in part supported by the Consiglio Nazionale delle Ricerche, Roma, Italy and in part by SNAM-Progetti, Milano, Italy.